ศิลป์และศาสตร์แห่งการเดินเรือ – จากที่เรือรายงานสู่ที่เรือดาวเทียม
ศิลป์และศาสตร์แห่งการเดินเรือ – จากที่เรือรายงานสู่ที่เรือดาวเทียม
บทความโดย :
Capt. Nemo -
กัปตัน นีโม
ระบบหาที่เรือด้วยดาวเทียม (SATELLITE NAVIGATION SYSTEM)
ระบบเดินเรือด้วยแรงเฉื่อยด้วยเลเซอร์ไยโรจะสามารถติดตามการเคลื่อนที่ของเรือได้
ถูกต้องแม่นยำกว่าการเดินเรือรายงานแบบดั้งเดิมมาก
แต่วิธีเดียวในการยืนยันความถูกต้องของ
ตำบลที่เรือยังคงต้องอาศัยจุดอ้างอิงจากภายนอกตัวเรือ และด้วยเหตุผลด้านความปลอดภัย
ระบบ
เดินเรือด้วยแรงเฉื่อยจึงมักถูกใช้ประกอบกับระบบหาที่เรือที่อาศัยแหล่งอ้างอิงจากภายนอก
เช่นระบบหาที่เรือด้วยวิทยุ อย่างไรก็ดีระบบหาที่เรือด้วยวิทยุในช่วงกลางศตวรรษที่
๒๐ ยังมีข้อจำกัดในด้านพื้นที่ครอบคลุมและความถูกต้องแม่นยำ โดยระบบ LORAN-C
ให้ตำบลที่ที่มีความถูกต้อง แม่นยำสูง แต่มีพื้นที่ครอบคลุมจำกัด
และความถูกต้องแม่นยำจะลดลงเมื่อระยะจากสถานีส่ง เพิ่มมากขึ้น ส่วนระบบ OMEGA
ใช้คลื่นวิทยุย่านความถี่ต่ำมากซึ่งให้การครอบคลุมทั่วโลก
แต่การใช้คลื่นวิทยุย่านความถี่ต่ำมากซึ่งมีขนาดความยาวคลื่นกว่าสิบไมล์ทำให้ให้ความถูกแม่นยำลดลง
การพัฒนาระบบหาที่เรือด้วยดาวเทียมเกิดมาจากความต้องการระบบที่สามารถให้ตำบลที่
ที่มีความถูกต้องแม่นยำสูงตลอด ๒๔ ชั่วโมง และมีพื้นที่ครอบคลุมทั่วโลก
โดยแนวความคิดในการนำดาวเทียมมาใช้หาที่เรือได้ถือกำเนิดขึ้นมาพร้อมๆ
กับความสำเร็จในการส่งดาวเทียมขึ้นสู่วงโคจรเป็นครั้งแรกในปี ค.ศ.๑๙๕๗ (พ.ศ.๒๕๐๐)
โดยนักวิทยาศาสตร์ที่สถาบันวิจัย APPLIED PHYSICS LABORATORY ณ มหาวิทยาลัย JOHNS
HOPKINS ได้สังเกตปรากฏการณ์ DOPPLER ของสัญญาณวิทยุจากดาวเทียม SPUTNIK ของสหภาพโซเวียตขณะที่ดาวเทียมเคลื่อนที่ผ่านฝั่งตะวันออกของสหรัฐอเมริกา
และพบว่าลักษณะของปรากฏการณ์ DOPPLER
ของสัญญาณที่ส่งออกมาจากดาวเทียมผ่านสถานีภาคพื้นที่ทราบตำบลที่แน่นอนนั้น
สามารถนำมาใช้คำนวณหาวงโคจรของดาวเทียมได้ และในทางกลับกัน ปรากฏการณ์ DOPPER
จากดาวเทียมที่ทราบวงโคจรแน่นอนสามารถนำมาใช้คำนวณหาตำบลที่บน พื้นโลกได้
ในปีต่อมาสถาบันวิจัย APPLIED PHYSICS LABORATORY ได้ร่วมมือกับกองทัพเรือสหรัฐฯ
ในการสร้างระบบหาที่เรือด้วยดาวเทียมขึ้น โดยอาศัยหลักการของปรากฏการณ์ DOPPLER
เรียกว่าระบบ NAVSAT (NAVY NAVIGATION SATELLITE SYSTEM)
หรือที่เป็นที่รู้จักในชื่อพลเรือนว่าระบบ TRANSIT
ปรากฏการณ์ DOPPLER และระบบ
NAVSAT
ปรากฏการณ์ DOPPLER
คือการที่ความถี่คลื่นเกิดการเปลี่ยนแปลงสูงขึ้นเมื่อแหล่งกำเนิดคลื่นและผู้รับมีการเคลื่อนที่สัมพันธ์เข้าหากัน
และความถี่คลื่นจะเกิดการเปลี่ยนแปลงลดลงเมื่อแหล่งกำเนิดคลื่นและผู้รับมีการเคลื่อนที่สัมพันธ์ออกจากกัน
โดยขนาดของการเปลี่ยนแปลงขึ้นอยู่กับความเร็วสัมพันธ์
ระบบ NAVSAT ใช้ลักษณะการเปลี่ยนแปลงความถี่ (DOPPLER SHIFT)
ของสัญญาณที่ส่งออกมาจากดาวเทียมในการคำนวณหาตำบลที่
โดยการเปลี่ยนแปลงความถี่ของสัญญาณขณะที่ดาวเทียมเคลื่อนที่ผ่านตำบลที่ของเครื่องรับบนพื้นโลกแบ่งออกได้เป็น
๓ ช่วง ช่วงแรกคือช่วงที่ดาวเทียมกำลังเคลื่อนที่เข้าหาเครื่องรับ
ความถี่ของสัญญาณที่รับได้จะมีค่าสูงและค่อยๆ
ลดลงเมื่อดาวเทียมเคลื่อนที่เข้าใกล้เครื่องรับเนื่องจากความเร็วสัมพันธ์ในการเคลื่อนที่เข้าหาลดลง
ช่วงที่สองคือช่วงที่ดาวเทียมผ่านเหนือเครื่องรับ
ความถี่ของสัญญาณที่รับได้จะมีค่าเท่ากับความถี่ที่ส่งออกมาจริง
และช่วงที่สามคือช่วงที่ดาวเทียมเคลื่อนที่ออกจากเครื่องรับ
ความถี่ของสัญญาณที่รับได้จะมีค่าลดลงไปตามระยะห่างจากเครื่องรับ
ระบบ NAVSAT เริ่มใช้ในปี ค.ศ.๑๙๖๔ (พ.ศ.๒๕๐๗)
ส่วนประกอบหลักของระบบประกอบด้วยดาวเทียม ๑๓ ดวง (สำรอง ๓ ดวง)
โคจรรอบโลกที่ความสูง ๖๐๐ ไมล์ ด้วยความเร็วประมาณ ๕ ไมล์ต่อวินาที
(ดาวเทียมแต่ละดวงโคจรรอบโลกทุก ๑๐๗ นาที)
สถานีภาคพื้นทำหน้าที่ติดตามดาวเทียมในวงโคจรและส่งค่าแก้ต่างๆ ให้กับดาวเทียม
และเครื่องรับสัญญาณและคำนวณตำบลที่บนเรือ โดยดาวเทียมในระบบจะส่งสัญญาณที่ความถี่
๑๕๐ และ ๔๐๐ เมกะเฮิรตซ์
การเปรียบเทียบการเปลี่ยนแปลงความถี่จากดาวเทียมสองดวงจะให้เส้นตำบลที่ ๑ เส้น
ส่วนตำบลที่แน่นอน (FIX)
จะได้จากการเปรียบเทียบการเปลี่ยนแปลงความถี่จากดาวเทียมอย่างน้อย ๓ ดวง
(ปกติจะใช้ดาวเทียม ๔ – ๗ ดวงเพื่อเพิ่มความถูกต้อง)
โดยวงโคจรของดาวเทียมแต่ละดวงจะ ครอบคลุมทุกจุดบนพื้นโลกอย่างน้อยวันละ ๒ ครั้ง
และการหาตำบลที่แน่นอนด้วยดาวเทียม ๔ ดวงจะทำได้ทุก ๓๕ – ๙๕ นาที
ระบบ GPS
ระบบหาที่เรือด้วยดาวเทียม GLOBAL POSITIONAL SYSTEM หรือ GPS ในปัจจุบัน
ถือกำเนิดมาจากการริเริ่มพัฒนาระบบ NAVSTAR GPS (NAVIGATION SYSTEM USING TIMING
AND RANGING GLOBAL POSITIONING SYSTEM) โดยกระทรวงกลาโหมสหรัฐฯ ในปี ค.ศ.๑๙๗๓
(พ.ศ.๒๕๑๖)
เพื่อใช้เป็นระบบหาตำบลที่แบบสามมิติที่ให้ทั้งตำบลที่และความสูงได้อย่างต่อเนื่องสำหรับเรือและอากาศยานในกองทัพ
แทนระบบ TRANSIT ที่ให้ตำบลที่เพียงสองมิติเป็นระยะๆ ทุก ๓๕ – ๙๕ นาที
ระบบ GPS ประกอบด้วยดาวเทียม ๒๘ ดวง โคจรรอบโลกที่ความสูง ๑๐,๙๐๐ ไมล์
แต่ละดวงโคจรรอบโลกทุก ๑๒ ชั่วโมง สถานีภาคพื้น ๕
แห่งทำหน้าที่ติดตามดาวเทียมในวงโคจรและส่งข้อมูลให้กับสถานีควบคุมหลักที่มลรัฐโคโลราโด
และเครื่องรับสัญญาณทำหน้าที่คำนวณหาตำบลที่
การหาตำบลที่ในระบบ GPS ใช้หลักการ TIMING AND RANGING
หรือการคำนวณระยะทางจากเวลาที่สัญญาณจากดาวเทียมเดินทางมาถึงเครื่องรับ
โดยดาวเทียมแต่ละดวงจะส่งสัญญาณที่ความถี่ ๑๕๗๕.๔๒ เมกะเฮิรตซ์ (เรียกว่าความถี่
L1) และความถี่ ๑๒๒๗.๖๐ เมกะเฮิรตซ์ (เรียกว่าความถี่ L2) ข้อมูลในความถี่ L1
ประกอบด้วยสัญญาณหยาบ (COARSE ACQUISITION CODE – C/A CODE) สำหรับผู้ใช้ทั่วไป (STANDARD
POSITIONING SERVICE – SPS) และสัญญาณละเอียด (PRECISION CODE – P CODE)
ซึ่งเข้ารหัสสำหรับใช้ในกองทัพสหรัฐฯ เท่านั้น (PRECISE POSITIONING SERVICE – PPS)
ส่วนข้อมูลในความถี่ L2 ประกอบด้วยสัญญาณ P CODE เพียงอย่างเดียว การส่งสัญญาณ P
CODE ในสองความถี่ทำให้เครื่องรับสามารถเปรียบหาผลกระทบจากบรรยากาศชั้น IONOSPHERE
เพื่อลดความคลาดเคลื่อนจากการรบกวนของชั้นบรรยากาศ
ลักษณะวงโคจรของดาวเทียม GPS ถูกออกแบบมาให้ทุกพื้นที่บนโลกสามารถมองเห็น
ดาวเทียมได้อย่างน้อย ๔ ดวงตลอดเวลา
โดยสัญญาณจากดาวเทียมหนึ่งดวงจะให้เส้นตำบลที่หนึ่งเส้นที่เกิดจากจุดตัดระหว่างพื้นผิวโลกกับทรงกลมที่มีรัศมีเท่ากับระยะทางจากดาวเทียม
ตำบลที่แบบสองมิติจะได้จากจุดตัดระหว่างทรงกลมรัศมีจากดาวเทียม ๒ ดวงกับพื้นผิวโลก
แต่เนื่องจากนาฬิกาในเครื่องรับอาจมีความคลาดเคลื่อนได้
ดังนั้นจึงต้องใช้ดาวเทียมดวงที่สามเพื่อแก้ค่าความคลาดเคลื่อนแบบเดียวกับการหาที่เรือชายฝั่งด้วยที่หมาย
๓ แห่ง และตำบลที่แบบสามมิติ (ตำบลที่และความสูง) จะหาได้จากดาวเทียมอย่างน้อย ๓
ดวง และใช้ดาวเทียมดวงที่ ๔ เพื่อแก้ค่าความคลาดเคลื่อน
ระบบ GPS มีมาตรการที่เกี่ยวข้องกับความปลอดภัยอยู่ ๒ มาตรการ
คือการเติมค่าความคลาดเคลื่อนลงใน C/A CODE เพื่อลดความถูกต้องแม่นยำ
เรียกว่ามาตรการ SELECTIVE AVAILABILITY และการป้องกันการรบกวนและปลอมแปลงสัญญาณ P
CODE เรียกว่ามาตรการ ANTI-SPOOFING ต่อมาเมื่อวันที่ ๑ พฤษภาคม ค.ศ.๒๐๐๐
(พ.ศ.๒๕๔๓) รัฐบาลสหรัฐฯ ได้ประกาศยุติการใช้มาตรการ SELECTIVE AVAILABILITY
ซึ่งเพิ่มความถูกต้องของบริการ SPS สำหรับผู้ใช้ทั่วไป แต่รัฐบาลสหรัฐฯ
ยังคงมีขีดความสามารถในการเริ่มใช้มาตรการ SELECTIVE AVAILABILITY
อีกเมื่อเห็นว่ามีความจำเป็น
GPS ด้วยการคำนวณค่าความคลาดเคลื่อนของสัญญาณ GPS จากสถานีฝั่งที่ทราบตำบลที่
แน่นอน จากนั้นสถานีฝั่งจะส่งค่าแก้ให้กับเครื่องรับในบริเวณใกล้เคียง ระบบ DGPS
สามารถให้ตำบลที่ได้ถูกต้องแม่นยำเทียบเท่ากับบริการ PPS
และสามารถแก้ค่าความคลาดเคลื่อนจากมาตรการ SELECTIVE AVAILABILITY ได้ แต่ระบบ DGPS
มีพื้นที่ครอบคลุมค่อนข้างจำกัด เนื่องจากเครื่องรับจะต้องอยู่ภายในรัศมีประมาณ ๑๐๐
ไมล์จากสถานีฝั่ง
::
หน้าที่
1
|
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 ::